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Abstract
We suggest a method of fitting of a zero-range model of a tectonic plate
under a boundary stress on the basis of comparison of the theoretical formulae
for the corresponding eigenfunctions/eigenvalues with the results extraction
under monitoring, in the remote zone, of non-random (regular) oscillations of
the Earth with periods 0.2–6 h, on the background seismic process, in case
of low seismic activity. Observations of changes of the characteristics of the
oscillations (frequency, amplitude and polarization) in course of time, together
with the theoretical analysis of the fitted model, would enable us to localize the
stressed zone on the boundary of the plate and estimate the risk of a powerful
earthquake at the zone.

PACS numbers: 01.45.D, 02.30.Jr, 02.30.Tb

1. Dynamics of the system of tectonic plates and the motivation of the zero-range model

The lithosphere of Earth consists of 14 tectonic plates which jigsaw fit each other. The plates
are isolated from underlying solid structures within the Earth mantle by the low-viscosity
layer of the asthenosphere which is formed, due to various conditions, including high pressure
and temperature, in the interval of depth 100–200 km. The plates move on the surface of
Earth, due to convective flows and variations of the angular speed of Earth, gliding on the
low-viscosity layer of asthenosphere and interacting with each other at some active boundary
zones, see below. Figure 1 shows a complex form of boundaries between tectonic plates and
their movements in different directions3. The plates are enumerated in the following order:
1. South-American plate, 2. African plate, 3. Somali plate, 4. Indian and Australian plates,
5. Pacific plate, 6. Nazca plate, 7. North-American plate, 8. Philippines plate, 9. Euro-Asian
plate, 10. Antarctic plate, 11. Caribbean plate, 12. Cocos plate, 13. Arabian plate.

3 Figure 1 is borrowed from the book of Aplonov [3], and is included in our text with permission of the publishing
house of the St Petersburg University.
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Figure 1. Boundaries of tectonic plates: (1) divergent boundaries (a—oceanic ridges; b—
continental rifts), (2) transforming boundaries, (3) convergent boundaries (a—insular; b—active
continental outskirts; c—collisions of plates). Directions and velocities of movement of plates
(cm year−1).

In addition to the 14 large plates described above there are 38 smaller plates (Okhotsk,
Amur, Yangtze, Okinawa, Sunda, Burma, Molucca Sea, Banda Sea, Timor, Birds Head,
Maoke, Caroline, Mariana, North Bismarck, Manus, South Bismarck, Solomon Sea,
Woodlark, New Hebrides, Conway Reef, Balmoral Reef, Futuna, Niuafo’ou, Tonga,
Kermadec, Rivera, Galapagos, Easter, Juan Fernandez, Panama, North Andes, Altiplano,
Shetland, Scotia, Sandwich, Aegean Sea, Anatolia, Somalia), for a total of 52 plates.

It is commonly accepted that the tectonic plates are relatively thin elastic structures,
approximately 100 km thick, with linear size from 1000 km to several thousand km.
The material of the plates, at the depth 100 km has typical Young’s modulus 17.28 ×
1010 kg m−1 s−2, density 3380 kg m−3 and Poisson coefficient 0.28. The velocity
of the longitudinal waves in these materials is approximately 8000 m s−1, and the velocity of
the flexural eigen-waves depends on the eigenvalues and varies, depending on the type of the
wave, on a wide range around 4500 m s−1, see formula (4) below. Because of non-accurate
matching of the boundaries of the neighboring plates, the zones of direct contact of the plates
are typically small—about 100 km—compared with the linear size of the plates. Remaining
inter-plate space is filled with loose materials, which are not able to accumulate any essential
amount of elastic energy caused by the deformation. These materials can damp oscillations
with short periods as 20 min–1 h. Damping of acoustic waves by loose materials was discussed
in [11, 19, 35]. Since tectonic plates are relatively thin, a major part of their kinetic energy
is stored in the form of oscillatory flexural modes. The underlying layer of the asthenosphere
makes flexural oscillation of plate possible, but also helps damping of the flexural waves with
short periods, due to non-zero viscosity. Based on above data we conjecture that the flexural
modes in different tectonic plates, in a certain range of periods, supposedly between 0.2 h–1 h,
see below the estimation of periods of eigen-modes of a model rectangular plate, are elastically
disconnected from each other. Thus we expect that these flexural modes characterize elastic
properties of the plates, but not the global elastic properties of the Earth’s crust.
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The convective flows in the asthenosphere and variations of the angular speed of Earth,
thanks to long-time variations of the moment of inertia of Earth, may cause collisions
of neighboring plates. In presence of the liquid friction on the underlying layer of the
asthenosphere, variations of the angular speed of earth cause mutual displacements of the
neighboring plates, because small plates react immediately on the variations of the angular
speed, and larger plates lag behind. These displacements cause collisions of the plates in the
active zones, where the plates directly contact each other. Generally, when the angular speed
of Earth decreases, with growing of the moment of inertia due to displacement of the center
of gravity of Earth, the collisions may occur on the eastern boundaries of the major plates
contacting smaller plates, observe, for instance, the contact of the Euro-Asia plate and the
Philippines plate on figure 1. The stress caused by the collision may be either discharged due
to forming cracks in the plates, splitting the active zone into independently moving fragments,
or, being applied for an extended period of time, may cause accumulation of a considerable
amount of (potential) elastic energy in the active zones of contacts, in the form of elastic
deformation of the stressed plates. This energy may be eventually discharged in the form of a
powerful earthquake.

Accumulation of the elastic energy, due to standard variational principle [7], causes the
increment of eigenfrequencies of the tectonic plates. In [27, 32, 33] oscillatory processes,
with similar spectral characteristics, were observed in mutually remote zones of the Euro-Asia
plate. The authors of [27] suggested calling the processes seismo-gravitational oscillations of
the Earth (SGO). Recent analysis, based on data of the international GEOSCOPE network,
revealed the existence of global oscillations with periods 3.97 h, 3.42 h, 1.03 h and 0.98 h.
SGO with smaller periods do not have global character. They are usually observed in certain
plates. For measurements of SGO, special devices are used (‘vertical pendulum’), with high
sensitivity to the variations of amplitudes and frequencies of SGO within the interval of periods
0.2–2 h. Modification of the registering channel of the device allowed us to extend the interval
to 0.2–6 h. Results of analysis of measurements of SGO with relatively short periods from
this range are presented in [30]. The data on SGO with longer periods and characteristics of
modern 3-channel seismographs can be found in [29]. Observations with these devices reveal
a wide spectrum of SGO. Some of the measured frequencies of SGO coincide with short-
time variations of the angular speed of Earth, which were estimated based on astronomical
observations, see [28]. All experimental data confirm the presence of active energy in the
system of tectonic plates, relevant to the inhomogeneity of the lithosphere. Direct calculations
of eigenfrequencies of the flexural modes of a rectangular thin plate � = d1 × d2, d1 =
4000 km, d2 = 8000 km, 200 km thick, were done, see [21], based on the bi-harmonic
model, under natural assumptions concerning the density of the material to be 3380 kg m−3,
the Young’s modulus is 17.28 × 1010 kg m−1 s−2 and the Poisson coefficient is equal to
0.28. Though the Young’s modulus of a tectonic plate varies on a wide range of values, it
is possible to provide a rough estimation, see below, of the periods of SGO and the length
of the corresponding running waves of a tectonic plate, by computing these parameters for a
model rectangular plate with elastic parameters equal to those of the tectonic plate on the half
depth, 100 km. Indeed, the corresponding dynamical equation for the transversal (vertical)
displacement f is

ρ
∂2f

∂t2
+

h2E

12(1 − σ 2)
�2f = 0. (1)

In [21] the simplest Neumann boundary conditions ∂u
∂n

∣∣
∂�

= ∂�u
∂n

∣∣
∂�

= 0 are imposed on the
boundary. This allows us to solve the dynamical equation by Fourier method, via separation
of variables. The eigenfunctions of the bi-harmonic operator coincide with the eigenfunction
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of the Neumann Laplacian, fl1,l2 = cos πl1x1
d1

cos πl2x1
d2

, but the eigenvalues of the Neumann
bi-harmonic operator

λ�2

l1,l2
= [

λ�
l1,l2

]2 = [
π2

(
l2
1d

−2
1 + l2

2d
−2
2

)]2

are squares of the corresponding eigenvalues of the Neumann Laplacian. Taking into account
that

h2E

12ρ(1 − σ 2)
= 0.1671020 = [0.64 × 105]4 =: α4,

we find the periods of flexural eigen-oscillations from the formula

ω2
l1,l2

=
(

2π

Tl1,l2

)2

= α4
[
λ�

l1,l2

]2
,

or

ωl1,l2 = 2π

Tl1,l2

= α2λ�
l1,l2

=: α2k2
l1,l2

, (2)

where k plays the role of the corresponding momentum. The speed of the flexural waves is
calculated as

v
f

l1,l2
= ∂�

∂k
= 2αkl1,l2 . (3)

Then for the above model plate the periods of flexural oscillations are defined by the formula
Th = 2.63

[
4l2

1 + l2
2

]−1
h, and the velocity of the corresponding flexural waves are calculated

as v
f

l1,l2
= 3400

√
4l2

1 + l2
2 m s−1. In particular, the period of the flexural oscillation f1,2 and

the speed of the corresponding flexural wave v
f

1,2 are calculated as

T1,2 = 0.33 h, v
f

1,2 = 9520 m s−1, (4)

and less for longer periods. The corresponding space-temporal oscillatory mode is

cos ω1,2t cos
πx1

4000
cos

π2x2

8000
,

with x1, x2 measured in kilometers. This oscillatory mode can be represented as a linear
combination of running flexural waves

cos

[
ω12t ± πx1

4000
± πx2

4000

]
. (5)

The corresponding wavelength is estimated by the minimum of
√


2
1 + 
2

2, where 
1,
2

correspond to the shift of the running wave by the corresponding period in time. For instance

ω1,2T12 = 2π = π
1 + π
2

4000

gives an estimation of the minimal wavelength as
√


2
1 + 
2

1 � 5656 km, which is much more
than the diameter of the active zone, 5656 km � 100 km. Hence the zero-range model can be
used, under above assumption, for the model stressed plate.

It appeared that periods of the eigen-modes f1,1–f5,5 sit in the interval 0.21–5 h and
their total number and distribution looks similar, see figure 2, to SGO described in the paper
[27, 32, 33], despite the trivial plane rectangular geometry of the plate and trivial Neumann
boundary conditions.

Examination of the results observed in [27, 32, 33] and theoretically obtained in [21]
resulted in the conjecture that flexural SGO can be interpreted as flexural eigen-modes of the
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Figure 2. Computed eigenfrequencies of the rectangular plate 4000 km × 8000 km for the modes
f (1, N)

Figure 3. Dynamics of seismo-gravitational oscillations observed in St Petersburg, 22–29 March
2000, see the text below.

relatively thin tectonic plates. We hope that the zero-range model may be also used in this
periods range for real tectonic plates as well.

In the following section we model dynamics of tectonic plates based on the bi-harmonic
boundary problem with ‘natural’ boundary conditions.

Variation of the character of SGO is seen from comparison of the graphs of the amplitudes
of SGO on 48 h intervals of time separated by the vertical dotted lines. The graphs on these
intervals show the reaction of the device on the oscillations of the ground.

A typical phenomenon of intense seismo-gravitational pulsation (SGP) was registered on
the vertical component Z on the initial interval marked by 0. This phenomenon was also noted
in the earlier paper [13]. See more about SGP in the further text, after figure 4.

The components Z, EW and NS are obtained after filtration. The graph on the interval
1 shows the reaction of the filter on the maximal phase of the earthquake 28 March 2000 in
Japan. The non-filtered graph Z represents the reaction of the base of the vertical seismograph
on the flexural oscillations of the ground.

Spectral-time cards, see below figure 4 represents the effect of growing of frequencies of
SGO in visual form. The data of the observations were filtered by the band filter with the band
strip (60–300 min). We used the gliding time window length 700 min, and step-wise shifts
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Figure 4. Time–frequency analysis of the vertical component of SGO.

with the 5 min steps. The interval of frequencies, measured in micro-Hertz, was chosen as
[70 mcHz, 250 mcHz] =: [Fmin, Fmax]. For resolution 0.034 mcHz the steps were halved to
guarantee better smoothness of the spectral function.

Effect of growing of the frequency of SGO was detected only on spectral-time cards
(ST-cards) of the vertical component of SGO, see below figure 4. The frequencies are
marked on the horizontal axes, time in hours—on the vertical axes, for the intervals 0,1,2,
respectively. The level of spectral amplitudes is represented by the variation of the color.
Oscillations with large spectral amplitudes, higher than the average level on the spectrum, are
marked by gray color. The maximal amplitudes are marked by white color. The values of these
amplitudes on the interval 0 are 3.5 times greater that the average amplitude, (frequency aboutbr
200 mcHz). On the interval 1 they exceed the average amplitude in 1.8 times (the frequency
about 200 mcHz). On the interval 2 they exceed the average amplitude in 3 times (the
frequency about 160 mcHz). For SGO with frequencies 90–110 mcHz and 170–190 mcHz the
amplitudes are 1.75 and 2.75 is times larger than the average amplitude. All three parts 0,1,2 of
figure 4 reveal two patterns of inclined gray domains (left-down to right-up and left-up to right-
down) which correspond to SGO with growing and decreasing frequencies, correspondingly.
This patterns provide an evidence of increment of the stored elastic energy in the system and
discharging the stored elastic energy, respectively in form of oscillation modes with certain
frequencies.

Growing of the frequency on the interval 2:

(1) The frequency is growing from fmin = 80 mcHz to 123 mcHz during the period of 15 h.
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(2) The frequency is growing from fmin = 130 mcHz to 185 mcHz during the period of
28.5 h.

(3) The frequency is growing from fmin = 170 mcHz to 200 mcHz during the period of 8 h.

Growing of the frequency on the interval 0:

(1) The frequency is growing from fmin = 165 mcHz to 205 mcHz during the period of 33 h.
(2) The frequency is growing from fmin = 125 mcHz to 165 mcHz during the period of 15 h.

Growing and decreasing of frequencies of SGO are easily noticeable also on the
interval 1.

Growing of the frequency is characterized by the ratio �ν
τ

, where �ν is the increment of
the frequency and τ is the corresponding time interval, when the growing was observed.

Other domains, where the frequency of the modes decrease with time growing, may be
interpreted as an evidence of local relaxation of the stress, probably caused by local destruction
of the plate (forming cracks).

We conjecture that the extended growth of frequencies of the SGO may be considered as a
precursor of strong earthquakes. Our ability to extract useful information from the observations
of frequencies and the shape of SGO is limited by our understanding of the mechanism of the
variation of the frequency and the shape of SGO modes arising from the boundary stress on
the tectonic plates.

There were also other observations of the shift of frequencies of selected modes of SGO.
Note, that in numerous observations on SGO in Leningrad (St Petersburg) intense short pulses
were also recorded. They are constituted by several sinusoidal harmonics with periods from
30 min to 1 h, and the total duration of the process 6–10 h. In several cases they were also
followed by powerful earthquakes—in 2–4 days. This process was noted first in [13] and was
given the name of ‘seismo-gravitational pulsations’, SGP. Statistical analysis was done based
on the data of the 6 months monitoring of SGO in St Petersburg. This analysis confirmed
that the connection between SGP and the subsequent strong earthquake is not random, with
probability 95%.

Essential information on SGO is obtained from the observation of variations of the
frequencies and the shape of the corresponding modes in the remote zone. The typical size
of the zone of contact is negligible, pointwise, when compared with the wavelength, which
generally can be estimated as [λ�]−1/2, see (5).

Although the boundaries of real tectonic plate are not smooth, however details of the
local geometry of the boundaries may be neglected compared with the wavelength of typical
waves on the plates. Then for SGO with periods 20 min–1 h we may base the theoretical
analysis of SGO on the bi-harmonic model for the relatively thin plate with natural boundary
conditions. In this paper we also neglect presence of the liquid layer of the asthenosphere
underlying the plate, thus reducing the problem to construction of self-adjoint extensions of
the 2D bi-harmonic operator.

In [31] we use the fact that characteristics of the seismo-gravitational oscillations in
remote zone depend on a small number of basic parameters. On one hand, this fact can
be interpreted in a spirit of the Saint-Venant principle4. On the other hand we were able to
interpret this fact in the spirit of operator extensions. Based on this observation we developed
in [31] a preliminary version of the above arguments and suggested to use a solvable zero-
range model of the tectonic plates under a pointwise boundary stress, caused by the collision
of plates. The role of the parameter of the model was played by some 3 × 3 real Hermitian
matrix M, see also the following section. Thus the number of the Saint-Venant parameters

4 We are grateful to Dr Colin Fox for inspiring discussion concerning the Saint-Venant principle.
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for the boundary stressed relatively thin tectonic plate is 6. We presume, that the matrix M
defines the type of the stress, depending on mutual positions of the contacting plates at the
active zone. There is a good reason to call M the Saint-Venant matrix and the number of
the Saint-Venant parameters (6)—the Saint-Venant number. We assume that mutual positions
of the plates in active zone, and hence the matrix M remains essentially unchanged during
extended period. Thus the matrix M characterizes the type of contact of tectonic plates in
this location and remains the same for all earthquakes arising from the given active zone. In
this paper, based on the compensation of singularities in the fundamental Krein formula, we
suggest an explicit formula for the perturbed eigenfunctions of the plate. Comparison of the
calculated eigenfunction with the data of the instrumental observations in remote zone, permits,
in principle, to fit the model, that is, to find the basic matrix M. Once fitted, the constructed
model would allow us to calculate in explicit form the increment of the eigenvalues and the
variations of the shape of the eigenfunctions of the stressed (perturbed) plate depending on the
type and the magnitude of the local stress. We assume that the shifts of the eigenfrequencies
and the changes of the shape of the eigen-modes can be measured for each active zone. With
numerous active stations in the GEOSCOPE and IRIS networks, fitting of the proposed model
can be done, eventually, for all active zones on the boundary of each major tectonic plate.

Generically earthquakes hit only one active zone at a time. Then comparing the observed
shift of the eigenfrequencies and the variations of the shape of the mode in the remote zone,
where the Saint-Venant principle is applicable, with the results of computing based on the
model, we will be able to localize the excited active zone based on the observed changes of
the eigenfrequencies and the shapes (amplitude, polarization) of the flexural eigen-modes.

Mathematically the zero-range model of the isolated pointwise stressed tectonic plate and a
similar zero-range model of the pointwise stressed tectonic plate submerged into environment
formed by other plates, intermediate layers and asthenosphere, differ by the type of basic
equations, but have a lot in common. In particular, the number of free parameters (6) for the
pointwise active zone, in the bi-harmonic model and Lame model is the same. We interpreted
these parameters in the spirit of the Saint-Venant principle as essential parameters describing
the shape of the wave process in the remote zone, see [31]. In this paper we obtain the
first order approximation for the perturbed eigenfrequencies and eigenfunctions based on a
modified Krein formula, see [1, 18], for the pointwise stressed thin plate described by the
bi-harmonic equation. The explicit representation of the perturbed eigen-modes permits to
fit the zero-range model suggested in [31] based on results of instrumental measurements of
SGO. We also conjecture that the properly fitted solvable model of the stressed tectonic plate
may help to enlighten the nature of the pulsations.

2. Zero-range model of the pointwise boundary stress

We may base our approach on the standard mathematical model of the tectonic plate in the
form of a thin elastic plate, thickness h, with free edge, or on the 3D Lame equations for
displacements. We consider both options, describing in the following two subsections specific
details of both models. Then we develop the common part of the theory, for both models
simultaneously.

2.1. Thin plate model for the isolated tectonic plate under the localized boundary stress

Denoting by D the ‘the bending stiffness’, connected with Young modulus E, the thickness
h of the plate and the Poisson coefficient σ by the formula D = Eh2[12(1 − σ 2)]−1, we

8
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represent, following [12], the corresponding dynamical equation for the normal displacement
u as

ρ
∂2u

∂s2
= D�2u.

We consider time-periodic solutions u(ωs, x) of the equation and separate the time, thereby
reducing the dynamical problem to the spectral problem with the spectral parameter

λ = ρD−1ω2 (6)

for a bi-harmonic operator on a compact 2D domain �—the tectonic plate—with a smooth
boundary ∂�

Au = �2u = λu, u ∈ W 4
2 (�),

and free boundary condition involving the tangential and normal derivatives of the displacement
u and the tension �u[

∂�u

∂n
+ (1 − σ)

∂3u

∂n∂t2

] ∣∣∣∣
∂�

= 0,

[
�u − (1 − σ)

∂2u

∂t2

] ∣∣∣∣
∂�

= 0, (7)

where n, t are the normal and the tangent directions on the boundary.
The bi-harmonic operator A is self-adjoint in the Hilbert space L2(�) := H. The

eigenfunctions of A are smooth and they form an orthogonal basis in L2(�) = H. We
consider the restriction A0 of A onto D(A0) constituted by all smooth functions vanishing
near the boundary point a ∈ ∂�. The restriction is symmetric, but it is not self-adjoint,
because the range of it (A − λI)D(A0), for complex 
 has a nontrivial complement Nλ

which is a linear hull of the Green function G(x, a, λ̄) := g0(x, λ̄) and its tangential derivatives
∂G(x,a,λ̄)

∂t
:= g1(x, λ̄), ∂2G(x,a,λ̄)

∂t2 := g2(x, λ̄) of the first and second order, at the point a. The
orthogonal complement Nλ of the range is called the ‘deficiency subspace’, and elements of
it—‘deficiency elements’:

Nλ := H � (A0 − λI)D0 =
2∨

s=0

gs(∗, λ̄).

The deficiency elements have, at the boundary point a, singularities of different types (see for
instance [14], where much more general problem is considered)

g0(n, t) ≈ (n2 + t2) ln(n2 + t2), g1(n, t) ≈ t ln(n2 + t2), g2(n, t) ≈ ln(n2 + t2),

hence they are linearly independent and form a basis in the deficiency subspace. The deficiency
subspace at the spectral point λ̄ is

Nλ̄ := H � (A0 − λ̄I )D0 =
2∨

s=0

gs∗, λ.

The dimensions of the deficiency subspaces (3, 3) constitute the ‘deficiency index’. Hereafter
we select λ = i and attempt to construct a self-adjoint extension of A0, which will play a role
of a zero-range model of the tectonic plate under the boundary strain.

Note that in the Lame model the deficiency index is also (3, 3), on a smooth boundary.
The role of deficiency elements is played by the columns of the Green matrix. The boundary
of the tectonic plates may be assumed smooth for the long waves (small λ), since the integral
shape of the solutions of the differential equations with small λ is not affected by the details
of the local geometry.

9
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2.2. Construction of the self-adjoint extension

Extend A0 from D0 onto D
(
A+

0

) = D0 + Ni + N−i as an ‘adjoint operator’ A+
0 by setting(

A+
0 ± iI

)
g = 0 for g ∈ N∓i . This operator not self-adjoint, and it is not even symmetric, so

that the boundary form〈
A+

0u, v
〉 − 〈

u,A+
0v

〉 = J (u, v) (8)

does not vanish, generally, for u, v ∈ D(A+
0). One can rewrite (8) in more convenient form

with using new symplectic coordinates with respect of a new basis in N

W +
s = 1

2

[
gs +

A + iI

A − iI
gs

]
= A

A − iI
gs

W−
s = 1

2i

[
ss − A + iI

A − iI
gs

]
= − I

A − iI
gs.

Since A+
0gs + igs = 0,

[
A+

0 − iI
]

A+iI
A−iI

gs = 0 we have,

A+
0W

+
s = W−

s , A+
0W

−
s = −W +

s . (9)

Following [24] we will use the representation of elements from the domain of the adjoint
operator, by the expansion on the new basis

u = u0 +
∑

s

ξ s
+W +

s + ξ s
−W−

s = u0 +
A

A − iI

∑
s

ξ s
+gs − I

A − iI

∑
s

ξ s
−gs

:= u0 +
A

A − iI
�ξ+ − I

A − iI
�ξ−. (10)

Note that due to (9)

A+ A

A − iI
�ξ+ = − I

A − iI
�ξ+, A+ −I

A − iI
�ξ− = − A

A − iI
�ξ−.

Note that the boundary form〈
A+

0u, v
〉 − 〈

u,A+
0v

〉
:= J (u, v)

of elements u, v,

u = u0 +
A

A − iI
�ξu

+ − I

A − iI
�ξu
− := u0 + nu, u0 ∈ D(A0)n

u ∈ N,

v = v0 +
A

A − iI
�ξv

+ − I

A − iI
�ξv
− := v0 + nv, u0 ∈ D(A0)n

v ∈ N

(11)

depends only on components nu, nv of u, v in the defect N. Then the boundary form is
represented as 〈

A+
0u, v

〉 − 〈
u,A+

0v
〉

:= J (u, v) = 〈�ξu
+ , �ξv

−
〉 − 〈�ξu

−, �ξv
+

〉
(12)

with Euclidean dot product for vectors �ξ± ∈ Ni . Note that the representation of the boundary
form in terms of abstract boundary values �ξ± contains only integral characteristics of the
elements from the domain of the operators considered, and hence it is stable with respect of
minor local perturbations of geometry of the plates. This enables us to substitute, for practical
calculations, the real irregular boundaries of the plates by the smoothed boundaries, obtained
via elimination of minor geometrical details, compared with the length of standing waves,
circa 5000 km, of SGO with periods in the essential range 20 min–1 h.

The boundary form vanishes on the Lagrangian plane defined in D
(
A+

0

)
defined by the

‘boundary condition’ with an Hermitian operator M : Ni → Ni :

�ξ+ = M�ξ−. (13)

10
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This boundary condition defines a self-adjoint operator AM as a restriction of A+
0 onto the

Lagrangian plane TM ∈ D
(
A+

0

)
defined by the boundary condition (13). The resolvent of

AM defined by the boundary conditions is represented, at regular points of AM , by the Krein
formula, see [2, 24]

(AM − λI)−1 = I

A − λI
− A + iI

A − λI
PM

I

I + P I+λA
A−λI

PM
P

A − iI

A − λI
, (14)

where P is an orthogonal projection onto Ni .

2.3. Compensation of singularities in Krein formula and calculation of the perturbed
spectral data

Singularities of the resolvent (AM − λI)−1 coincide with the spectrum of AM . But both
terms in the right side of (14) also have singularities on the spectrum of the non-perturbed
operator A. The singularities of the first and second term eigenvalues of A compensate each
other. We are able to derive this statement via straightforward calculation, in classical Krein–
Birman–Schwinger formula and in the corresponding construction for quantum networks, see
[1, 18]. In the course of the calculation of the compensation of singularities we can recover
both the eigenvalues of the perturbed operator AM and the corresponding eigenfunctions,
see [18]. Note that a similar statement, as a lemma on compensation of singularities of the
corresponding Weyl–Titchmarsh function, was discovered in [6] for 1D solvable model of the
quantum network in the form of a quantum graph. Later, in [16] and in [15], similar statements
were proven for Dirichlet-to-Neumann maps of quantum networks. We formulate here this
statement for the resolvent of the self-adjoint extension based on ideas proposed in [17].

We will observe the effect of compensation of singularities on a certain spectral interval
�0 = [λ0 − δ, λ0 + δ], centered at the resonance eigenvalue λ0 of the non-perturbed plate,
assuming that the perturbation defined by the matrix M is relatively small, in a certain sense,
see below.

Assuming that there is a single eigenvalue λ0 of A on the interval �0, with the
eigenfunction ϕ0, we use the following representations, separating the polar terms from
smooth operator functions Ki,K−1,K on �0

A + iI

A − λI
= (λ0 + i)

ϕ0〉〈ϕ0

λ0 − λ
+ K−i ,

A − iI

A − λI
= (λ0 − i)

ϕ0〉〈ϕ0

λ0 − λ
+ Ki,

P
I + λA

A − λI
P = (

1 + λ2
0

)Pϕ0〉〈Pϕ0

λ0 − λ
+ K(λ),

(15)

with a smooth matrix function K = K0 + o(|λ − λ0|), with K0 = K(λ0) and ‖o(|λ − λ0|)‖ �
C0δ.

Definition 2.1. We say that the matrix M is relatively small, if [I + K(λ)M]−1 exists and is
bounded on �0.

This condition is obviously fulfilled if

‖[I + K(λ0)M]−1‖C0δ  1. (16)

To calculate the second term in the right side of the Krein formula (14) we have to compute
the inverse of the denominator, that is to solve the equation[

I + P
I + λA

A − λI
M

]
u = g. (17)

11
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Though the standard analytic perturbation technique is still not applicable to this equation
under the above conditions 2.1 or (16), we are able to construct the inverse based on finite
dimensionality (one-dimensionality) of the polar term.

u = [I + KM]−1g − (
1 + λ2

0

) [I + KM]−1Pϕ0〉〈Pϕ0M[I + KM]−1g〉
λ0 − λ + 〈Pϕ0M[I + KM]−1ϕ0〉 . (18)

Based on (18) we are able, see [1, 18] to observe the compensation of singularities in the
above Krein formula (14) and calculate the polar term of the resolvent at the single eigenvalue
of the operator AM on the interval �0.

Theorem 2.1. If the perturbation is relatively small, as required in (2.1), then there exists a
single eigenvalue λM of the perturbed operator AM on the interval �0 which is found as a
zero of the denominator in (18)

λ0 − λ +
(
1 + λ2

0

)〈Pϕ0M[I + KM]−1ϕ0〉 := dM(λ), dM(λM) = 0 (19)

and the corresponding eigenfunction

ϕM = ϕ0 − (λ0 − i)K−iM[I + KM]−1Pϕ0, (20)

computed at the zero λM . The polar term of the resolvent of the perturbed operator at the
eigenvalue is represented as

ϕ0 − (λ0 − i)K−iM[I + KM]−1Pϕ0〉〈ϕ0 − (λ0 − i)K−iM[I + KM]−1Pϕ0

dM(λ)
.

Proof. of this statement can be obtained similarly to the corresponding statement in [18],
where the case of several eigenvalues of the non-perturbed operator on an essential spectral
interval was discussed. We consider here the simplest case, when only one eigenvalue
of the unperturbed plate is present on an essential spectral interval. If the perturbation is
small as required by condition (16), then the approximate eigenvalue and the corresponding
approximate eigenfunction of AM can be obtained via replacement of K,K±i into (19), (20)
by K(λ0),K±i (λ0)

λM ≈ λ0 +
(
1 + λ2

0

)〈Pϕ0M[I + K(λ0)M]−1K(λ0)ϕ0〉,
ϕM ≈ ϕ0 − (λ0 − i)K−i (λ0)M[I + K(λ0)M]−1Pϕ0.

(21)
�

Remark. Analysis of the multi-point boundary condition which corresponds to several
stresses applied at the points a1, a2, . . . am on the boundary of the plate � differs from the
above analysis of the single-point case, only in the first step. In the case of a multi-point
stress we have to construct of elements

{
gr

0(x, ar , i), g
r
1(x, ar , i), g

r
2(x, ar , i)

}m

r=1 a basis in
the larger deficiency subspace Ni , dim Ni = 3m. Due to the presence of singularities of
different types at different points, the deficiency elements are linearly independent.

3. Concluding remarks on the fitting of the model

The pair of data (21) may be used in two different ways: either for calculation of the shift
of the frequency of SGO and the corresponding perturbation of the eigenfunction, under the
pointwise stress characterized by the matrix M, or, vice versa, for recovering of the data on
the localization, the type and the intensity of the stress from instrumental observations.

Indeed, if the geological structure of the tectonic plates at the active zones, encoded in
matrices Ms attached to the zones, are known, then, theoretically, we are able to calculate the
eigenfunctions and the eigenfrequencies of the plates, taking into account the stress caused

12
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by collisions. We are also able, theoretically, to construct the deficiency elements for all
active zones. Then the self-adjoint extension of the bi-harmonic operator on the plate, with
the pointwise boundary stress, can be constructed, with the corresponding matrices Ms . The
obtained theoretical results can be compared with the results of the instrumental measurements.
This permits to recover the matrices Ms , which characterize the stressed points a1, a2, . . . .

Assume that the structure of the plates at the collision point a remains unchanged, but the
tension is growing linearly with time τ as M(τ) = mτ , with a matrix coefficient m : N → N .
Then the formulae (20), (19), for small τ , define the derivatives of λM, ϕM with respect to τ

at the moment τ = 0

∂ϕM

∂τ

∣∣∣∣
τ=0

= −(λ0 − i)K−im0P+ϕ0(xs),
∂λM

∂τ

∣∣∣∣
τ=0

= (
1 + λ2

0

)〈P+ϕ0,mP+ϕ0〉.

Comparing this result with ratios

ϕmτ (xs) − ϕ0

τ
(xs)

∣∣∣∣
τ=0

,
λmτ − λ0

τ

∣∣∣∣
τ=0

,

measured experimentally for the amplitude and frequency of SGO, we are able to find fit m,
and calculate the increment of MδM = τm.

Practical experience in analytic perturbations shows, that minor perturbations affect rather
the eigenvalues, than the shapes of the eigenfunctions of the spectral problem. Based on this
observation we can estimate the speed of accumulation of elastic energy E , under the pointwise
boundary stress depending on the speed of the shift of the eigenvalues (eigenfrequencies) of
SGO and initial distribution of the elastic energy on the modes ϕs

0 defined by the corresponding
Fourier coefficients

〈
u, ϕs

0

〉
dE
dτ

≈
∑

s

dλs
M

dτ

∣∣〈u, ϕs
0

〉∣∣2 =
∑

s

(
1 + (λs)2

0

)〈
P+ϕ

s
0,mP+ϕ

s
0

〉∣∣〈u, ϕs
0

〉∣∣2
,

with the summation extended only on the eigen-modes which correspond to the varying
eigenvalues. If only one active zone as is involved at a time, then only one matrix Ms has to
be taken into account, so that the risk of the powerful earthquake may be estimated based on
the magnitude of δs = τms .

If there are several active zones at the points a1, a2, . . . , an on the boundary of the plate,
then the corresponding matrices M1,M2, . . . , Mn can be fitted based on observations of SGO
in the remote zone during preceding earthquakes which occurred at a1, a2, . . . , an. Variations
of the frequencies and the shape of SGO may arise from the stress at any active zone, but
usually only one active zone is involved at a time. Once the matrices M1,M2, . . . , are known,
then comparison of the perturbation of the frequencies and the shapes of seismo-gravitational
modes, SGM (or, probably, seismo-gravitational pulsations, SGP) at the given groups of points
in the remote zone with results of previous measurements at these points, would allow us to
identify the active zone where the stress is applied. We presume that the above model gives
a chance to introduce a useful system into the scope of the experimental data on the seismo-
gravitational oscillations in remote zone and use them for estimating of risk and localization
of the powerful earthquakes. This opens an alternative to the statistical methods, see [34], of
estimation of risk of powerful earthquakes.

Fitting of the proposed model in reality requires both extended computing and a major
experimental data base. Because the wavelengths of the standing waves, circa 5000 km, on the
essential range of periods, 20 min–1 h, dominate the size of the active zones, one may assume,
that the straightforward computing with averaged and smoothed data for Young’s modulus
and geometric characteristics of the plates will enable us to obtain a realistic approximation of
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the deficiency elements, with singularities at the active zones, and to construct the perturbed
eigenfunctions of the plates, which correspond to SGO.

More accurate theory requires taking into account realistic boundary conditions, and the
exchange of energy with the liquid underlay and neighboring plates. In particular, arising new
modes in the spectrum of SGO of the plate, transferred, due to the tight contact in active zone,
from the neighboring plate may be considered as another possible precursor of a powerful
earthquake. The choice of realistic boundary conditions has to be done based on experimental
data interpreted within an appropriate extension of the scheme proposed above, with Lame and
hydro-dynamical equations involved. We postpone discussion of these interesting questions
to oncoming publications.
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